Lignoceric acid is oxidized in the peroxisome: implications for the Zellweger cerebro-hepato-renal syndrome and adrenoleukodystrophy.
نویسندگان
چکیده
The deficient oxidation and accumulation of very-long-chain fatty acids in the Zellweger cerebro-hepato-renal syndrome (CHRS) and X chromosome-linked adrenoleukodystrophy (ALD), coupled with the observation that peroxisomes are lacking in CHRS, prompted us to investigate the subcellular localization of the catabolism of lignoceric acid (C24:0). Peroxisomal and mitochondrial-rich fractions were separated from rat liver crude mitochondria by sucrose density gradient centrifugation. Enzyme activity for the oxidation of [1-14C]palmitic acid to water-soluble acetate was 2- to 3-fold higher in the mitochondrial than in the peroxisomal-rich fraction whereas [1-14C]lignoceric acid was oxidized at a 2- to 3-fold higher rate in the peroxisomal than in the mitochondrial fraction. Moreover, unlike palmitic acid oxidation, lignoceric acid oxidation was not inhibited by potassium cyanide in either rat liver fractions or human skin cultured fibroblasts, showing that lignoceric acid is mainly and possibly exclusively oxidized in peroxisomes. We also conducted studies to clarify the striking phenotypic differences between CHRS and the childhood form of ALD. In contrast to CHRS, we found normal hepatocellular peroxisomes in the liver biopsy of a childhood ALD patient. In addition, in the presence of potassium cyanide, the oxidation of palmitic acid in cultured skin fibroblasts was inhibited by 62% in control and X chromosome-linked ALD patients compared with 88% in CHRS and neonatal ALD. This differential effect may be related to differences in peroxisomal morphology in those disorders.
منابع مشابه
Localization of nervonic acid beta-oxidation in human and rodent peroxisomes: impaired oxidation in Zellweger syndrome and X-linked adrenoleukodystrophy.
Studies with purified subcellular organelles from rat liver indicate that nervonic acid (C24:1) is beta-oxidized preferentially in peroxisomes. Lack of effect by etomoxir, inhibitor of mitochondrial beta-oxidation, on beta-oxidation of lignoceric acid (C24:0), a peroxisomal function, and that of nervonic acid (24:1) compared to the inhibition of palmitic acid (16:0) oxidation, a mitochondrial f...
متن کاملAnimal cell mutants represent two complementation groups of peroxisome-defective Zellweger syndrome.
Generalized peroxisome-deficient disorders including cerebro-hepato-renal Zellweger syndrome, neonatal adrenoleukodystrophy, and infantile Refsum disease are autosomal recessive diseases, where catalase-containing particles (peroxisomes) are morphologically absent. We previously isolated two Chinese hamster ovary (CHO) cell mutants (Z24 and Z65) that resemble the fibroblasts from patients with ...
متن کاملCellular oxidation of lignoceric acid is regulated by the subcellular localization of lignoceroyl-CoA ligases.
The acyl-CoA ligases convert free fatty acids to acyl-CoA derivatives, and these enzymes have been shown to be present in mitochondria, peroxisomes, and endoplasmic reticulum. Because their activity is obligatory for fatty acid metabolism, it is important to identify their substrate specificities and subcellular distributions to further understand the cellular regulation of these pathways. To d...
متن کاملPeroxisomal beta-oxidation of branched chain fatty acids in human skin fibroblasts.
Human skin fibroblasts in suspension are able to degrade [1-14C]-labeled alpha- and gamma-methyl branched chain fatty acids such as pristanic and homophytanic acid. Pristanic acid was converted to propionyl-CoA, whereas homophytanic acid was beta-oxidized to acetyl-CoA. Incubation of skin fibroblasts with [1-14C]-labeled fatty acids for longer periods produced radiolabeled carbon dioxide, presu...
متن کاملZellweger syndrome (cerebro-hepato-renal syndrome).
A syndrome with distinctive clinical features affecting brain, liver and kidneys was described by Bowen et al in 1964 1 and Smith et al. in 1965 2 . In 1973 Goldfisher et al 3 has reported that peroxisomes were absent in the liver and kidneys of affected children. More recently lack of dihydroxyacetone phosphate acyletransferase (DHAP-AT) a peroxisomal enzyme with a major role in glycerol ether...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 81 13 شماره
صفحات -
تاریخ انتشار 1984